Bone morphogenetic protein dominantly suppresses epidermal growth factor-induced proliferative expansion of adult forebrain neural precursors

نویسندگان

  • Sandra E. Joppé
  • Laura K. Hamilton
  • Loic M. Cochard
  • Louis-Charles Levros
  • Anne Aumont
  • Fanie Barnabé-Heider
  • Karl J. L. Fernandes
چکیده

A single asymmetric division by an adult neural stem cell (NSC) ultimately generates dozens of differentiated progeny, a feat made possible by the proliferative expansion of transit-amplifying progenitor cells (TAPs). Although NSC activation and TAP expansion is determined by pro- and anti-proliferative signals found within the niche, remarkably little is known about how these cells integrate simultaneous conflicting signals. We investigated this question focusing on the subventricular zone (SVZ) niche of the adult murine forebrain. Using primary cultures of SVZ cells, we demonstrate that Epidermal Growth Factor (EGF) and Bone Morphogenetic Protein (BMP)-2 are particularly powerful pro- and anti-proliferative factors for SVZ-derived neural precursors. Dose-response experiments showed that when simultaneously exposed to both signals, BMP dominantly suppressed EGF-induced proliferation; moreover, this dominance extended to all parameters of neural precursor behavior tested, including inhibition of proliferation, modulation of cell cycle, promotion of differentiation, and increase of cell death. BMP's anti-proliferative effect did not involve inhibition of mTORC1 or ERK signaling, key mediators of EGF-induced proliferation, and had distinct stage-specific consequences, promoting TAP differentiation but NSC quiescence. In line with these in vitro data, in vivo experiments showed that exogenous BMP limits EGF-induced proliferation of TAPs while inhibition of BMP-SMAD signaling promotes activation of quiescent NSCs. These findings clarify the stage-specific effects of BMPs on SVZ neural precursors, and support a hierarchical model in which the anti-proliferative effects of BMP dominate over EGF proliferation signaling to constitutively drive TAP differentiation and NSC quiescence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells.

Glioblastoma cells with stem-like properties control brain tumour growth and recurrence. Here, we show that endogenous neural precursor cells perform an anti-tumour response by specifically targeting stem-like brain tumour cells. In vitro, neural precursor cells predominantly express bone morphogenetic protein-7; bone morphogenetic protein-7 is constitutively released from neurospheres and indu...

متن کامل

Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain.

Adult forebrain neurogenesis is dynamically regulated. Multiple families of niche-derived cues have been implicated in this regulation, but the precise roles of key intracellular signaling pathways remain vaguely defined. Here, we show that mammalian target of rapamycin (mTOR) signaling is pivotal in determining proliferation versus quiescence in the adult forebrain neural stem cell (NSC) niche...

متن کامل

Retinoic acid signaling identifies a distinct precursor population in the developing and adult forebrain.

We asked whether retinoic acid (RA), an established transcriptional regulator in regenerating and developing tissues, acts directly on distinct cell classes in the mature or embryonic forebrain. We identified a subset of slowly dividing precursors in the adult subventricular zone (SVZ) that is transcriptionally activated by RA. Most of these cells express glial fibrillary acidic protein, a smal...

متن کامل

Multiple roles of Activin/Nodal, bone morphogenetic protein, fibroblast growth factor and Wnt/β-catenin signalling in the anterior neural patterning of adherent human embryonic stem cell cultures

Several studies have successfully produced a variety of neural cell types from human embryonic stem cells (hESCs), but there has been limited systematic analysis of how different regional identities are established using well-defined differentiation conditions. We have used adherent, chemically defined cultures to analyse the roles of Activin/Nodal, bone morphogenetic protein (BMP), fibroblast ...

متن کامل

In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain.

The lateral ventricle subependyma in the adult mammalian forebrain contains both neural stem and progenitor cells. This study describes the in situ modulation of these subependymal neural precursor populations after intraventricular administration of exogenous growth factors. In vivo infusion of epidermal growth factor (EGF) into adult mouse forebrain for 6 consecutive days resulted in a dramat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015